skip to main content


Search for: All records

Creators/Authors contains: "Du, Yanhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To identify superior thermal contacts to graphene, we implement a high-throughput methodology that systematically explores the Ni−Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on thermal interface conductance with monolayer graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni−Pd/Cr/graphene/ SiO2 samples identify a maximum metal/graphene/SiO2 junction thermal interface conductance of 114 ± (39, 25) MW/m2 K and 113 ± (33, 22) MW/m2 K at ∼10 at. % Pd in Ninearly double the highest reported value for pure metals and 3 times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates with a region of the Ni−Pd phase diagram that exhibits a miscibility gap. Cross-sectional imaging by high-resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to two-dimensional materials for next-generation devices. 
    more » « less
  2. To identify superior thermal contacts to graphene we implement a high throughput methodology that systematically explores the Ni-Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on the thermal interface conductance with monolayer CVD graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni- Pd/Cr/graphene/SiO2 samples both identify a maximum in the metal/graphene/SiO2 junction thermal interface conductance of 114± (39, 25) MW/m2K and 113± (33, 22) MW/m2K at ~10 atomic percent Pd in Ni—nearly double the highest reported value for pure metals and three times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates to a region of the Ni-Pd phase diagram that exhibits a miscibility gap. Cross sectional imaging by high resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to 2D materials for next generation devices. 
    more » « less
  3. Abstract

    The development of novel doping strategies compatible with high‐resolution patterning and low cost, large‐scale manufacturing is critical to the future development of electronic devices. Here, an approach to achieve nanoscale site‐specific doping of Si wafer using DNA as both the template and the dopant carrier is reported. Upon thermal treatment, the phosphorous atoms in the DNA diffuse into Si wafer, resulting in doping within the region right around the DNA template. A doping length of 30 nm is achieved for 10 s of thermal treatment at 1000 °C. Prototype field effect transistors are fabricated using the DNA‐doped Si substrate; the device characteristics confirmed that the Si is n‐doped. It is also shown that this approach can be extended to achieve both n‐type and p‐type site‐specific doping of Si by using DNA nanostructures to pattern self‐assembled monolayers. This work shows that the DNA template is a dual‐use template that can both pattern Si and deliver dopants.

     
    more » « less
  4. Abstract

    Brain‐inspired neuromorphic computing has the potential to revolutionize the current computing paradigm with its massive parallelism and potentially low power consumption. However, the existing approaches of using digital complementary metal–oxide–semiconductor devices (with “0” and “1” states) to emulate gradual/analog behaviors in the neural network are energy intensive and unsustainable; furthermore, emerging memristor devices still face challenges such as nonlinearities and large write noise. Here, an electrochemical graphene synapse, where the electrical conductance of graphene is reversibly modulated by the concentration of Li ions between the layers of graphene is presented. This fundamentally different mechanism allows to achieve a good energy efficiency (<500 fJ per switching event), analog tunability (>250 nonvolatile states), good endurance, and retention performances, and a linear and symmetric resistance response. Essential neuronal functions such as excitatory and inhibitory synapses, long‐term potentiation and depression, and spike timing dependent plasticity with good repeatability are demonstrated. The scaling study suggests that this simple, two‐dimensional synapse is scalable in terms of switching energy and speed.

     
    more » « less